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Divergence From Factorizable Distributions and
Matroid Representations by Partitions
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Abstract—Maximization of the information divergence from any
hierarchical log-linear model is studied. A new upper bound on the
maximum is presented and its tightness analyzed. For the models
given by the bases of a matroid, the latter is related to matroid rep-
resentations by partitions or, equivalently, to ideal secret-sharing
schemes. A new link between the divergence maximization, the
maximum-likelihood principle, and secret sharing is established.

Index Terms—Almost affine code, contingency table, exponential
family, Gibbs distribution, hierarchical model, information diver-
gence, log-linear model, matroid representation, maximum likeli-
hood, partition, relative entropy, secret-sharing scheme, Shannon
entropy.

I. INTRODUCTION

L ET be a finite set and a nonempty family of subsets
of . A probability measure (PM) on the Cartesian

product of finite state spaces is called -
factorizable if there exist real functions on
such that

where projects to . The family of all -factorizable PMs
on that are positive, in the sense for all ,
is denoted here by . Statisticians speak about a hierar-
chical log-linear model [10] as the family does not change if
is enriched by subsets of the sets from .

The information divergence, or relative entropy, between
PMs on is given by

otherwise

where is the support of , and the
divergence of from the family by
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This work focuses on maximization of the function

over in the simplex of all PMs on . If denotes instead an
arbitrary exponential family of PMs on a finite set, this maxi-
mization problem goes back to [1], for later progress see [2],
[14], [15], [17].

Theorem 1 of Section III presents upper bounds on the
divergence by sums of Shannon entropies of
marginals of and the cardinalities of state spaces. As a
consequence, a new upper bound on emerges.
Necessary conditions for tightness of the bound are formulated
in Theorem 2.

In Section IV, the attainment of the upper bound is discussed
when is the family of bases of a matroid with the ground set

and the state spaces have the same cardinality . When the
matroid has no coloop and the bound is tight, maximizers of

have a special form. In particular, they can be
constructed from matroid representations by partitions of the
degree or, equivalently, by ideal secret-sharing schemes with
the secret of the size .

Statistical and cryptographic interpretations of these results
are collected in Section V, viewing the maximizers as empir-
ical measures and applying the maximum-likelihood (ML) prin-
ciple.

II. PRELIMINARIES

In the sequel, elements and singletons of are frequently not
distinguished. For example, shortens to and
to . The union is denoted by .

Extending elementary notions from the matroid theory, an
element of not in is called a loop of and an
element which belongs to every inclusion maximal set in is
called a coloop of .

In the case , the space is assumed to be a singleton,
say . Thus, projects to and supports
a unique PM.

A. Linear and Exponential Families

For and , let equal one if
and zero otherwise. The marginal of a PM on to is the
PM on given by
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The linear family determined by a PM and is defined
as the set of all PMs on with for .

As is well known, is the full exponential
family determined by the counting measure on and a canon-
ical statistic that takes values in the Euclidean space
where . The statistic can be
given by

Thus, the PMs in have the exponential representation

where is an arbitrary vector
parameter and a corresponding normalizing constant. The
bracket equals the scalar product of and in and
simplifies to . Under the formal substitution

, exponential representations of positive
PMs rewrite to multiplicative factorizations and vice versa.
Standard references to the exponential families include [3]–[5].
For the approach through toric algebra see [9].

The closure of the family is denoted by . The
following assertions are well known and their elementary proofs
can be found in [8] or [11, Proposition 4]. For general results in
this direction see [6].

Lemma 1:

Lemma 2: If is any PM on then and have
a single PM in common, , and is
unique in with this property.

B. First Decomposition Lemma

The following assertion is a key component of the proof of
Theorem 1. Let denote the restriction
of onto .

Lemma 3: If and a set in covers , then
for any PM on

(1)

Additionally, if each set from is contained in or then (1)
becomes tight.

Proof: In this proof or . By Lemma 2

(2)

where the PM satisfies

(3)

(4)

Since is contained in some it is also contained
in . This and (3) imply that the marginals

and coincide.

Then, with the notation

if projects to and otherwise, is a
PM on . It is not difficult to show that where

. In fact, (4) implies that is the limit of
a sequence of positive -factorizable PMs whence
the positive PMs given by

are -factorizable. Since when projects to
, the PMs converge to .

Any set of is covered by a set of . Therefore, is
contained in . Lemma 1 and this containment imply
that is equal to which is
upper-bounded by . This is majorized by

because . Hence, it suffices to show that
equals the right-hand side of inequality (1).

The support of contains because is a subset
of by finiteness in (2). Thus, rewrites to

Then, inequality (1) follows on account of (2).
If each set of is covered by or then . Thus,

. The incidence follows by combining
(3), , and . By Lemma 2, equals

whence (1) becomes tight.

Corollary 1: If then for any PM on

(5)

Proof: Lemma 3 is applied to and ,
and provides (1) which is tight by the assumption on . Since

it follows that consists of the uniform PM
on and

This and the tight inequality (1) sum to (5).

Remark 1: By [7, Sec. 5], is continuous on the
simplex of all PMs on . This and Corollary 1 imply

(6)

assuming . In fact, to prove the inequality in (6),
sum with (5) and maximize. To prove the
opposite one, any maximizer of is extended to
a PM such that and then (5) is applied.

Combining (5) and (6), a PM maximizes if and
only if the marginal maximizes and
equals . Roughly speaking, the loops can be removed from
the family in the maximization problem.
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C. Second Decomposition Lemma

For a PM on and
let denote the PM on that assigns to the
ratio where is given by the projections

and .

Lemma 4: If is a set of coloops of and then
for any PM

Proof: By Lemma 2, for a unique PM

(7)

exists such that

(8)

Let if projects to and
otherwise. Then, is a PM on with

using that on account of finiteness in (8).
Obviously, and for .
These equalities, (8), and the simple identity

imply

Due to Lemma 2, it remains to show that .
To prove , it suffices to verify that for

every inclusion maximal set in . Since is a set of coloops
and for

whenever projects to and otherwise.
In the former case, equals by (7),
and then . This equality holds trivially
in the latter case.

By (7), if then is the limit of a sequence of
positive -factorizable PMs . Otherwise, let be
uniform on . Then, the positive PMs given by

for , are -factorizable and converge to .

Remark 2: It is a simple consequence of Lemma 4 that

(9)

Combining the equality of Lemma 4 and (9), a PM
maximizes if and only if maximizes

for each in the support of . Roughly
speaking, the coloops can be removed from the family in the
maximization problem.

III. THE UPPER BOUNDS ON

The following result is based on a repeated use of Lemma 3.

Theorem 1: Let be a finite set and a nonempty family
of its subsets. If , a set with any is covered
by a set of , and the union of these sets equals then for
any PM on

(10)

where . If the equality takes place here then
, and for

(11)

Proof: For any the function is
identically zero because is covered by a set of . This and
Lemma 3, with in the role of and

, containing the set that covers , imply

By the basic inequalities for Shannon entropies [20], the second
line is upper-bounded by tightly if and only if (11)
holds and

(12)

Denoting by , if follows that

This, Corollary 1, and imply inequality (10).
In the case of equality, (11) and (12) are true for , and

. Therefore, .

Corollary 2: For every

(13)

Corollary 3:

Remark 3: For the family consisting of all singletons
, the divergence of a PM from the family

equals , the multi-information of .
Corollary 3 appeared as [2, Lemma 4.1] while inequality (13)
was contained in the proof of this lemma.
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The remaining part of this section discusses tightness of the
bound of Corollary 3.

Lemma 5: If a PM has the marginal uniform on
for every , and for some then

(14)

Proof: Lemma 2 and the first assumption imply that
equals where denotes the uniform PM

on . The latter divergence equals . By the
second assumption, equals for some .
Hence, , and the assertion follows by
Corollary 3.

The above sufficient condition for a PM to satisfy (14) is
not necessary in general. In the special case of the family con-
sidered in Remark 3, a different necessary and sufficient condi-
tion is described in [2, Theorems 4.3 and 4.4]. That condition,
however, reduces to the above one when the state spaces have
the same cardinality by [2, Corollary 4.10]. Under this assump-
tion, the assertion of Lemma 5 can be reversed as follows.

Theorem 2: Let
and the state spaces , have the same cardinality .
If for a PM on then
equals for all . If additionally has no coloop
then is uniform for all .

Proof: Assuming a sequence of sets with as in
Theorem 1, the assumptions on , and on
imply that inequality (10) rewrites to

Since the above differences are pairwise disjoint,
cover and for , this
inequality is tight and each marginal is uniform. Then,
inequality(10) is tight and it follows from the second assertion
of Theorem 1 that and

(15)

provided .
For any and , it is always possible to find a

sequence of sets as above with and . This
implies the first assertion. In addition, is uniform and

is the product of with this uniform PM, using (15).
Therefore, denoting by the set of coloops of , the marginal

is the product of with the uniform PM on .
If has no coloop is uniform.

Example 1: Let and consist of the sets
and . The family has the coloop . All

state spaces are assumed to equal . The PM sitting
uniformly on and , and the PM uni-
form on have the same marginals to any

, and is -factorizable. If follows that
equals . Since the marginal is not
uniform, the second assertion of Theorem 2 fails without the
exclusion of coloops.

Remark 4: When examining (14), the two decomposition
lemmas can be used to remove loops and coloops as follows. By
Corollaries 1 and 3 with , it is not difficult to see that
a PM satisfies (14) if and only if equals and

equals , which is the upper
bound of Corollary 3 with in the role of . By
Lemma 4, denoting the set of coloops of and ,
a PM satisfies (14) if and only if for each that belongs to
the support of

which is the upper bound of Corollary 3 with re-
placing .

IV. MATROID REPRESENTATIONS BY PARTITIONS

In this section, the role of is played by the family of bases
of a matroid with the ground set . Let denote the rank

function of

(16)

A base is characterized by . A
subset of is covered by a base if and only if in
which case it is called independent. The remaining subsets of
are dependent in the matroid. The inclusion minimal dependent
sets are called circuits. Backgrounds on the matroid theory are
collected in [18], [19].

A. Definition and Basic Properties

By [13, Definition 1], a matroid over is partition repre-
sentable of the degree if there exist partitions ,
of a finite set with elements such that for all
the meet of , has blocks of the same cardinality.
The collection is called a partition representation of the
matroid of degree .

Such a partition representation gives rise to the PM on the
product where is the set of blocks of

otherwise,
(17)

The above intersection is a singleton if nonempty. It is not dif-
ficult to see that

(18)

This means that has the cardinality and is
uniform on its support.

Remark 5: For a PM on the product of finite sets
, let be the partition of having in the same

block if and only if . If satisfies (18) with some
and the rank function of a matroid then it is easy to see

that is a partition representation of the matroid of the
degree .

Remark 6: The partition representations are very closely
related to the ideal secret-sharing schemes, or to the almost
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affine codes, or to probabilistic representations of matroid-in-
duced conditional independence relations. These relations are
discussed in detail in [13, Sec. 5] and [16, Sec. 4].

The expression (18) implies that
, thus, the entropies of marginals are proportional to

the ranks with the multiplicative factor . The following
assertion shows that this implication can be reversed under
some assumptions. Recall that a matroid is connected if
equals only when is or . A nonconnected
matroid decomposes into connected components.

Theorem 3: For a matroid over with the rank function
and PM on , if for each from every

connected component of the matroid that has the rank one and
, then (18) holds. If also

then is integer.

This assertion is a variation on [12, Theorem]. For reader’s
convenience a proof is presented in Appendix.

B. Attainment of the Upper Bound Via Representations

In this and the following subsection it is assumed that the state
spaces have the same cardinality .

Remark 7: If a PM corresponds to a partition represen-
tation of a matroid as in Remark 5, thus satisfies (18),
then for every the marginal is uniform on and

is equal to . By Lemma 5, equals
which is the upper bound of Corollary 3.

Such PMs however do not exhaust all maximizers of
that attain the bound. In fact, consider another matroid
such that is a subfamily of . If a PM corresponds to
a representation of as in Remark 5 then, by the same
argumentation as above, attains the upper bound

. This situation is illustrated by the following
example.

Example 2: Let ,

and contain in addition the set . Let partition rep-
resentations have the degree and all state spaces consist
of and . The PM sitting uniformly on the four elements

and of corre-
sponds to a representation of while the PM sitting
uniformly on and
to a representation of . In both cases, and

are equal to , the upper bound on
of Corollary 3.

Remark 8: If a PM corresponds to a partition represen-
tation of a matroid as in Remark 5 then for every set

the marginal PM corresponds to a partition rep-
resentation of the restriction of the matroid to . By Remark 7,

equals , which is the upper
bound on resulting from Corollary 3.

C. Tightness of the Upper Bound for Matroids

By Theorem 2, if a matroid has no coloop and the
function attains the upper bound

at some PM then and is
uniform for all . In general, this conclusion is weaker than
(18), as can be seen in Example 2 for the marginal .

However, in the case of a uniform matroid without coloops,
when consists of all the subsets of of the cardinality sat-
isfying , a PM on has equal
to if and only if (18) holds. Thus, by Remark 5,
the upper bound is attained if and only if the uniform matroid
is partition representable of the degree . Such representations
of uniform matroids correspond to the families of or-
thogonal Latin hypercubes of the size [13, Example 1.5]. In
particular, if and , then the corresponding ma-
troid, , is partition representable of the degree if and only
if two orthogonal Latin squares of the size exist. Hence, the
bound is attainable if and only if is different from and .
In the two excluded cases, the maximum of is not
known.

For a general matroid, even a uniform one, a necessary and
sufficient condition for to attain the bound resulting
from Corollary 3 remains elusive. The exclusion of loops and
coloops is not restrictive in the problem, due to Remark 4.

Excluding coloops, the following result reveals that when
each marginal of a PM makes to attain
the corresponding upper bound of Corollary 3 then matroidal
structures of and are unavoidable. In particular, the asser-
tion of Remark 8 is reversed.

Theorem 4: Let be a finite set, a nonempty family of
subsets of , and the rank function of given as in (16). Let

have no coloop and all the
state spaces have the same cardinality . If a PM

on satisfies

(19)

then the inclusion maximal sets from form the family of bases
of a matroid and (18) holds for .

Proof: Theorem 2 applies to conclude that the marginal
is uniform on for . Thus, the equations in (18)

hold when is covered by some set from .
Assume is covered by no set from . Any inclusion

maximal set from is properly contained in . For such
and , no set from covers , and thus there

exists an inclusion minimal subset of that is covered by
no set from . Then, belongs to and contains all
sets with , but not . By (19), Theorem 2 applies to

and the marginal , and implies that has
the same entropy as .

Therefore, equals . Since was
arbitrary, equals . It follows that has

elements and is uniform on its support,
using that is covered by some set from .

Hence, if is covered by no set from then all the
inclusion maximal sets from have the same cardinality

, equal to by the definition of the rank
function. By [18, Theorem 2, p. 14], the inclusion maximal sets
of form a family of the bases of a matroid. The rank function
of the matroid is . For every it follows that has
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elements of the same -probability which implies the
validity of (18) for .

Remark 9: As a consequence, the matroid representations of
a matroid without coloops, disguised into the PMs satisfying
(18) as in Remark 5, can be equivalently defined by requiring
each marginal to have the divergence
that attains the corresponding upper bound of Corollary 3.

V. DISCUSSION

Assume is a sequence of elements from and
a PM from the family . The product char-

acterizes numerically a relation between the sequence and PM.
Statisticians speak about a sequence of independent and identi-
cally distributed (i.i.d.) observations from an unknown PM be-
longing to the hierarchical log-linear model and a likelihood.

The ML principle considers a maximizer of the product
subject to for an ML estimate. Ac-

tually, no maximizer may exist but it exists and is unique if
maximizing alternatively over . This follows from a
general theory of ML estimation in exponential families, see
[7] for recent revisions and completions.

The empirical distribution of the sequence is obtained by
demanding to be equal to the number of ’s between
and such that , for . Since

the maximization considered in the ML principle is directly re-
lated to the minimization of over . Therefore, the
number evaluates how the ML principle works on
the sequence and family. When this divergence is small, the
model fits the data, in a statistical language. If the empirical dis-
tribution, however, maximizes then the observations
are the most unfavorable with respect to the given model, from
the viewpoint of the ML principle.

The results presented in the previous section establish a new
link between the hierarchical log-linear models, ML estimation,
and ideal secret sharing, and demonstrate that a statistically un-
favorable situation can have a distinguished cryptographic con-
tent. For example, assume a matroid is uniform of rank

and is its partition representation of the degree ,
in the sense of Remark 5 with all the state spaces of the cardi-
nality . If a sequence lists all elements of
without repetitions , then the empirical distribution of the
sequence equals and is the most unfavorable with respect to
the model . At the same time, corresponds to a threshold
scheme, a particularly simple instance of ideal secret sharing.
For general matroids, such an interpretation can be based on
Remark 9.

The cryptographic content becomes clear when a maximizer
satisfying (18) is interpreted as an ideal secret-sharing

scheme. This is outlined as follows. The elements of are
called the participants and an arbitrarily chosen from the
dealer of a scheme. The elements of are called the secrets.
The aim is to choose a secret and communicate to each
participant a share such that, pooling shares
together, authorized groups of participants can recover the
secret while the secret remains concealed from unauthorized

groups of participants. Here, a group is authorized if it contains
for some circuit containing .

Sampling from , the coordinate becomes the secret
and the share of the th participant. Each authorized group

can find the secret uniquely from the pooled shares
because equals . If is not authorized
then , thus the scheme is
perfect. Since for all it is even ideal.

APPENDIX

This appendix contains a proof of Theorem 3. It is shown first
that for any circuit with

(20)

In fact, for different is the product if its marginals
because follows from the as-
sumptions on entropies. Hence, for and
there exists that projects on and . In turn, for

, the assumptions on entropies imply that

By symmetry, the equalities hold also when is replaced by .
Comparing the two pairs of equalities, for
any and . This observation combines
with to conclude that is integer, the
support of has the cardinality , and this marginal PM sits
uniformly on it.

Let a connected component of the matroid have the ground
set . If then (20) is a consequence of
and . If , then partitions into
the blocks of mutually parallel elements. Any two elements of

that are not parallel are contained in a circuit of size at least
three [19, Theorem 4.1.4]. Then, (20) follows from its starting
version with circuits.

To summarize, (20) is true if denotes the set of elements of
that are not the loops of the matroid. Hence, is integer if

not all elements are loops, thus .
It follows from the assumptions on entropies that if is an

independent set of the matroid then the marginal of to sits
uniformly on which has elements.
Since the rank of any subset of equals for a maximal
independent set contained in , the entropies of and
coincide. Therefore, the two marginals sit uniformly on sets of
the same cardinality, thus (18) holds.
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